ABSTRACT

Objective: The aim of present work was to develop a RP-HPLC method for simultaneous analysis of Dicyclomine (DCL) and Mefanamic acid (MFA) in a tablet dosage form. Method: Waters Chromatographic system was optimized using a Lichrocart C18 column (250 x 4.60 x 5ìm) with mobile phase comprising of 50 mM KH$_2$PO$_4$: Acetonitrile in the ratio of 75:25. The flow rate was adjusted to 1.0 ml/min with UV detection at 256 nm. Result: DCL and MFA were eluted with retention times of 7.213± 0.3 min and 11.102± 0.3 min respectively. Beer’s Lambert’s Law was obeyed over the concentration ranges of 5-25 ìg/ml, 50-250 ìg/ml for DCL and MFA respectively. Conclusion: The high recovery and low coefficients of variation confirm the suitability of the method for simultaneous analysis of both drugs in a tablet dosage form. Statistical analysis proves that the method is sensitive and significant for the analysis of DCL and MFA in pure and in pharmaceutical dosage form without any interference from the excipients. The method was validated in accordance with ICH guidelines.

Keywords – Dicyclomine; Mefanamic acid; Simultaneous estimation; HPLC.

INTRODUCTION

Dicyclomine hydrochloride (DCL) is 2-(diethylamino)ethyl bicyclohexyl-1-carboxylate hydrochloride. It binds more firmly to M$_1$ and M$_3$ than to M$_2$ and M$_4$ receptors. It has one-eighth the neurotropic activity of atropine and approximately twice the musculotropic activity of papaverine. It is used for its spasmyloytic effect on various smooth muscle spasms, particularly those associated with the gastrointestinal tract. It is also useful in dysmenorrhea, pylorospasm and biliary dysfunction. It is used to treat a certain type of intestinal problem called irritable bowel syndrome. It helps to reduce the symptoms of stomach and intestinal cramping. This medication works by slowing the natural movements of the gut and by relaxing the muscles in the stomach and intestines. MFA [N-(2,3-xyllyl) anthranilic acid] is a white to off white crystalline solid with a bitter aftertaste. It will darken if exposed to light for long periods but is otherwise stable at room temperature. It is virtually water insoluble except at an alkaline pH. It is synthesized from o-chlorobenzoic acid and 2,3-dimethylaniline under catalytic conditions. MFA is the only fenamic acid derivative which produces analgesia centrally and peripherally. It is COX-1 inhibitor as well as PG receptor antagonist action. It inhibits leukotriene levels by inhibiting phospholipase-A$_2$. It is very effective in dysmenorrhea besides osteoarthritis. Combination of MFA and DCL has a Synergistic effect.

EXPERIMENTAL

Materials and Methods

Reference standard of DCL and MFA gifted by Fortune Health Care Pvt. Ltd., Vadodara (Gujarat), India and Novartis Pharmaceuticals Pvt. Ltd., Hyderabad, (A.P.) India respectively and they were used as such without further purification. Water HPLC grade was obtained from a Milli-Q RO water purification system. All the chemicals and reagents used were of analytical reagent grade.

Instrumentation

Analysis was performed on HPLC system equipped with waters pump, UV-Visible detector, Lichrocart C18 column (250 x 4.60 x 5ìm) was used for separation.

Preparation of standard stock solution

10 mg of DCL and 10 mg of MFA were weighed accurately and transferred to separate 10 ml volumetric flask and volume was adjusted to the mark with the mobile phase to give a stock solution of 1000 ìg/ml.

Preparation of working standard solution

From stock solution of DCL 05-25 ìg/ml and from stock solution of MFA 50-250 ìg/ml concentrations were prepared.
RP-HPLC method for simultaneous analysis of Dicyclomine and Mefanamic acid

System Suitability

According to United State Pharmacopoeia 2007 system suitability tests are an integral part of LC method in the course of optimizing the conditions of the proposed method. The system suitability test solution was injected and chromatographic parameters for DCL and MFA were evaluated for proving the system suitability. Results are given in Table 1.

RESULTS AND DISCUSSION

Optimization of chromatographic conditions

Finally optimized parameters for method development are presented in Table 2.

Quantification of drugs present in marketed formulation

The chromatograms of mixture showed complete separation of two drugs. The chromatograms of individual components were also obtained. The ingredients were also quantified with respect to the standards. The results obtained are presented in Table 3 and HPLC Chromatogram for DCL and MFA in Fig. 1.

Method validation for HPLC

The method was validated according to ICH guidelines for linearity, selectivity, precision, accuracy, robustness. Selectivity was checked using drug sample and mixture of standards in order to optimize separation and detection.

Linearity

Linearity of method was performed by analyzing a standard solution of drugs by the method in the selected concentration range for both drugs (Table 4).

Accuracy

The accuracy of the proposed method was determined by a recovery study, carried out by adding standard in drugs (Table 5).

Precision

Precision was determined by repeatability, inter day and intraday reproducibility experiments (Table 4). A standard solution containing drugs were injected six times. % Relative standard deviation of all the parameters was less than 3.5% for the degree of repeatability of the developed method. The low coefficient of variation values of intraday and inter day precision revealed that the method is precise (Table 6).
Table 6: Precision for DCL and MFA

<table>
<thead>
<tr>
<th>Precision (%RSD)</th>
<th>DCL</th>
<th>MFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraday (n=3)</td>
<td>0.653</td>
<td>0.810</td>
</tr>
<tr>
<td>Interday (n=3)</td>
<td>1.155</td>
<td>1.662</td>
</tr>
<tr>
<td>Repeatability (n=6)</td>
<td>0.154</td>
<td>0.125</td>
</tr>
</tbody>
</table>

Ruggedness
The ruggedness of analytical method is degree of reproducibility of test results by the analysis of same sample under varieties of normal test conditions such as different laboratories, different analyst, different day, different instrument, different column\(^1\). Results are presented in Table 7.

Table 7: Ruggedness for DCL and MFA

<table>
<thead>
<tr>
<th>Ruggedness (%RSD)</th>
<th>DCL</th>
<th>MFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst 1 (n=3)</td>
<td>0.110</td>
<td>0.115</td>
</tr>
<tr>
<td>Analyst 2 (n=3)</td>
<td>0.225</td>
<td>0.220</td>
</tr>
</tbody>
</table>

Robustness
Statistical analysis showed no significant difference between results obtained employing the analytical conditions established for the method and those obtained in the experiments in which variations of some parameters were introduced. Thus, the method showed to be robust for changes in mobile phase flow rate, mobile phase ratio\(^1\). The analysis data are presented in (Table 8).

Table 8: Robustness for DCL and MFA

<table>
<thead>
<tr>
<th>Robustness (%RSD)</th>
<th>DCL</th>
<th>MFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowrate (-10%)</td>
<td>0.123</td>
<td>0.141</td>
</tr>
<tr>
<td>Flowrate (+10%)</td>
<td>0.114</td>
<td>0.145</td>
</tr>
<tr>
<td>Mobile phase ratio (-2%)</td>
<td>0.880</td>
<td>0.457</td>
</tr>
<tr>
<td>Mobile phase ratio (+2%)</td>
<td>0.290</td>
<td>0.445</td>
</tr>
</tbody>
</table>

Therefore this HPLC method can be regarded as selective, accurate and precise.

CONCLUSION
The developed method describes in detail the steps necessary to perform each parameter for validation. Interpretation of results of validation parameters study shows that results of method is directly proportional to the concentration of analyte within a given range shows linearity of method. Different environmental condition and minor change in chromatographic condition doesn’t cause any significant change in results shows stability and reproducibility of developed method. There was no interference by excipients with analyte peak shows proposed method is specific for analyte. As well as recovery study shows developed method is highly accurate. Hence the proposed HPLC method has been evaluated and validated for the accuracy, precision, and linearity and found to be convenient, sensitive and specific for the quality control of DCL and MFA in tablet dosage form.

ACKNOWLEDGEMENT
The authors wish to thank Principal and Management of Shivnagar Vidyarthi Pashar Mandal's College of Pharmacy, Malegaon (Bk), Tal- Baramati, Dist-Pune and Scan Research Bioanalytical Laboratories, Bhopal, for providing required lab facilities with enthusiastic environment.

REFERENCES

